An open source detector for cosmic rays

J. Devine, C. Cantini, E. Noah, H. Day
J. Salmon, L. Haegel, R. Asfandiyarov

11th October 2015
Agenda

What is it?
Science goals
Architecture
Current status
What's next...
An open hardware detector that anyone can buy or build to detect cosmic rays individually, and connect to a network creating a cosmic ray telescope.
The Science bit...

Cosmic Rays
Muons
Mean energy 4GeV
Secondary particles
Event Reconstruction
Hardware challenges:

High stability HV Power (70V)
High gain amplifiers (>1e6)
Trigger generation
High speed timing & ADC sync.
Integration of other sensors

All in a USB Device
Hardware model

Detector module
- scintillator tile
- two SiPM
- light tight enclosure

Analog Processing
- trigger generation
- signal amplification
- signal shaping

Digital Processing
- analog signal digitization
- sensors readout
- data organization
- power supply control
- Communication and data display via touchscreen

Data Processing
- data acquisition
- data storage
- data analysis
- communication with central server or local computer
- data visualization
Hardware (Version 1, Oct 2014)
Architecture (Version 1)

- Scintillator
 - Plastic Slab
 - Wavelength Shifting Fibre
 - Plastic socket
 - Silicon Photomultiplier

- Power supply
 - 5V → 80V

- Pi Hat
 - Analog Front End
 - Trigger
 - Front End Amp
 - Pulse Shaper
 - SPI ADC
 - Sensor hardware
 - Altimeter
 - Temp. RH
 - GPS
 - Timing Hardware (33MHz counter)

- Raspberry Pi
 - Input via SPI/I2C/GPIO/UART
 - Data acquisition
 - Data storage
 - Data analysis
 - Data representation
 - Standard Raspian

- Central server
 - Indexing, Management

<- Internet ->
Lessons Learned (Version 1)

- Raspberry Pi too slow (non RT-PREEMPT)
- Hardware timing limits event rate to 1Hz
- Lots of effort into choosing ADC, wasted!
- HV PSU too noisy
- Analog Front End needs matching to SiPM
Hardware (Version 1.1, Oct 2015)

Modular Approach:
Dev Boards
NIM Crate

Integrate components into circuit & firmware one at a time
Analog Architecture Prototype

- Based on real world detectors
- 2 channels required for coincidence
- Raw output SiPM = 5ns pulse, mV range
- Pulse shaper
- Simple trigger
Architecture (Version 1.1)

Still a work in progress
Lessons Learned (Version 1.1)

- Single core is challenging when communicating over serial
- Integrated ADC in Arduino DUE (SAM3X8E M3 - 32 bit ARM) is adequate, 1 MSPS
- ADC continuous read and buffering essential
- Operational stability/reliability work in progress
- JSON is quite heavyweight for Arduino
Mechanical Hardware: Scintillator tiles

- Extruded plastic with a chemical additive, few manufacturers
- Light reflective coating on the outside
- Detector specific geometry
- Wavelength shifting fibre → for silicon detector
- High mechanical precision & alignment
Current Status

- Able to detect cosmic rays using our prototype
- Maxim 1932 Boost IC integrated last week for high voltage
- Analog Front End needs moving from a 19” Rack to a PCB
- Open format for Cosmic Ray data exchange
- Prototype Version 2!
What's next?

- Fully integrated prototype
- Firmware robustness
- Improve software stack
- Open source scintillator design?
- Design → Production
Follow us at cosmicpi.org

Coming soon on KICKSTARTER